UTM & MGRS Coordinate System History
In 1994 a friend of mine made a request to the Pentagon for information on the origin of the UTM and MGRS coordinate systems. My friend handed off the documents he received to me in 2015. I've scanned them into pdf files and had them retyped so they would be both more readable and searchable. I've also replaced a missing page and line that's not in the pdf files.
The documents received date from the 1940's and clearly show that the requirements of artillery gunners were the driving force in the design of map coordinate systems.
Response from John W. Hager Geodesist with the Defense Mapping Agency
A link to a pdf of the original document
DEFENCE MAPPING AGENCY HYDROGRAPHIC/TOPOGRAPHIC CENTER SCIENTIFIC DATA DEPARTMENT GEOPOSITIONING DIVISION GEOPOSITIONING BRANCH V Details of the origin of the Military Grid Reference System (MGRS) have become obscure with the passage of time. The earliest information available in this office, the Study and Discussion of Military Grids, Probably early 1947, contains all the specifications of the Universal Transverse Mercator (UTM) grid. This study does not mention the MGRS. A memorandum from the Commanding Officer of the Army Map Service to the Chief of Engineers, 6 December 1946, (Encl 2 to the above study) gives examples of grid references. It is noted that the 100,000-meter grid square letters, an integral part of the MGRS, are not here used in the grid references. The letter from Brigadier Martin Hotine, Directorate of Military Survey , (Encl 3 to the above study) states that the specifications for a six-degree Transverse Mercator world- wide system were communicated to the British in October 1945. On 27 February 1948, the Joint Mapping Photography Committee Ad-hoc Committee on Universal Military Grid Referencing System proposed a grid referencing system containing all the specifications of the MGRS as it is currently used. The Joint Intelligence Committee (JIC) of the Joint Chiefs of Staff issued JIC Papers 410/1 and 410/2, approved 14 November 1949, prescribing the use of the Universal Transverse Mercator Grid, the Universal Polar Stereographic Grid and the Military Grid Reference System by all branches of the Armed Forced for joint operations use. AGAO-S 061.3 (28 Dec. 49) CSGID-M, Issued 29 December 1949 by the Office of the Adjutant General, Department of the Army, prescribed the use of those grids and grid reference system for the Department of Army. Army Map Service Technical Manual No.36, Grids and Grid References, January 1950, elaborated the details of the military grids and grid reference system. This was subsequently replaced by Department of the Army Technical Manual 5-241-1 , same title. The latest elaboration of these details is contained in Defense Mapping Agency Technical Manual 8358.1, Datums, Ellipsoids, Grids, and Grid Referencing Systems. JOHN W. HAGER Geodesist
Brigadier Hotine's letter, London 1945
This is one of the early documents articulating the desire for a world-wide grid system.
A link to a pdf of the original document
Directorate of Military Survey, War Office. 12th November, 1945. To:- Colonel A.G. Matthews, Chief, Intelligence Division, c/o ST & D (RE) 1801 K Street N.W. Washington, D.C. Dear Matty, Many thanks for your letter of October 26th regarding proposed new world- wide grid systems. I think there can be no doubt that the polyconic is a bad military grid because it is not orthomorphic and does not therefore give the required degree of accuracy in rapid "plane" computations for range and bearing; or the same facility as an orthomorphic projection in rapid small instrumental surveys interpolated by "plane" methods. The present haphazard plaster of grids which has grown up all over the world (particularly in British areas of responsibility) is also a headache even though these are orthomorphic. They frequently lead to junctions in awkward places, although there is no reason to suppose that the junction bug- bear will be overcome by any cast-iron 6-degree system; or indeed by any grid system at all. The main point I think is that before we change at all we want to make quite certain that we are changing in the direction of the far future and not merely to meet some transient consideration. It is bound to be many years before we get on to a new system and we shall merely have had the vast labour and confusion for nothing if by then we have changed our minds again. We have been considering this matter at this end and have decided at any rate to try out a "mesh" system based upon the graticule rather that the use of a "plane" grid at all. The advantage of a mesh system are as follows: (a) It would obviate all grid junctions everywhere at any rate on the smaller scale maps. There would, however, be come discontinuity remaining on large scale maps across the boundary of disparate survey systems (e.g.:- the frontier of two countries) where fundamental geographic positions are not in sympathy. (b) It would vastly facilitate inter-service cooperation. The Navy, for instance, always work on some sort of graticule system of reference if they can and are only induced to accept "plane" grids for bombardment purposes under protest. The Air Force similarly hate grid junctions which always fall awkwardly for such purposes as fighter defense. Many anti-air defence systems cannot in any case operate across a grid junction, e.g.:- the use of "fruit machines" for vectoring defending aircraft. The question has for instance arisen in particularly acute form in relation to Coast Artillery which may otherwise be forced to switch at very short notice between no less than three grids; one for landward firing in support of ground operations; one for seaward firing in conjunction with the Navy; and one at the shortest notice for employment in an A.A. role. The disadvantages of a mesh system may be summarized as :- (a) Computations for range and bearing will not be simple, although it is likely that for the most rapid purposes the introduction of a scale factor in one direction will be sufficient: the value of the scale factor being suitably broadcast by, for instance, marginal information on maps. (b) All trig. lists would have to be cast into the graticule. We should no longer be able to use the results of foreign surveys neat in their own native projection. (c) The vast cost and probable confusion over a long period of time involved in any change. We are, however, trying out a mesh system in experimental areas in conjunction with the Artillery. I do not know what the answer will be but I certainly think that we must go into this much broader question in detail before we make any alteration whatever. If it is decided to stick to grid and to introduce a world-wide system then I think the six-degree Transverse Mercator proposal is as good as any. One advantage of it which has probably been brought to your notice is that the Russians do this and have adopted the six- degree belts of the International 1/1M map. The Germans were also proposing to do so, We get a considerable portion of the globe already covered for us on this system therefore (always assuming that we can get any data out of the Russians, which is doubtful). Conversely it may be considered an advantage to the Russians for us to facilitate their study of our surveys and to utilise them. This aspect of question very soon runs into deep water. Although the introduction of a world system of grids such as the Transverse Mercator proposal looks very tidy i doubt very much whether it would work out quite as tidily. A meridian boundary, in the nature of things must always ignore such factors as a grid junction falling awkwardly in a possible battle area and also such factors as the straight utilisation of National surveys, which of course are placed on a National projection rather than a purely geographic one. We might accordingly find that we had undertaken all the disadvantages of change for very little if we were to adopt such a stereotyped proposal. Another question that arises is the choice of a unit. We are likely to standardize on the metre of the grid systems. The main reason is that the British Army must accustom itself to training, and even maybe fighting overseas where it will frequently get foreign maps dished up with the least possible alteration in the shortest possible time. In the majority of the cases foreign material and trig. data would be in metres. There is moreover a growing world tendency (not as yet very evident in America) to get on to such an International unit as the metre for basic surveys, even though the common linear units of the country may be different. For instance the new surveys of Great Britain are coordinated in metres and all post-war O.S. maps will carry a metric grid. It would of course be a great advantage if we could both do the same but I do not know how you view the chances of getting the metre adopted for such purposes in America. At first I should not have thought the chances were very great. If we go on to a "mesh" system the question of degrees or grades or mils or possibly some other systems altogether will arise. It is necessary to have some decimal sub-division of angle for this purpose but the centesimal system works out too small and the mil works out too large as applied to latitude and longitude on the earth's surface. The sexagesimal minute is about right but is not decimally sub-divided, nor does it spring decimally from a parent unit. The answer may be to adopt, as the unit tens and decimals of sexagesimal minutes. We are adopting the latter for our preliminary trials. I will let you know this question progresses and shall be grateful for any further developments your side. I think it is important that we should keep in close touch with one another oven though we may not finally be able to adopt the same system. In fact I feel a little guilty about not having briefed you sooner. M.HOTINE Brig. D. Survey *COPY*
STUDY AND DISCUSSION OF MILITARY GRIDS
by
Army Map Service
and
Military Intelligence Division, Office, Chief of Engineers, U.S. Army
A link to a pdf of the original document
STUDY AND DISCUSSION OF MILITARY GRIDS by Army Map Service and Military Intelligence Division, Office, Chief of Engineers, U.S. Army 1. Purpose of Study The purpose of the following study is to determine the characteristics required in a military grid and to select a system most nearly answering these requirements. Marked disadvantages are inherent in most grid systems now used. These disadvantages are complicated by the existence of many incompatible systems. 2. Existing Conditions 2.01. The polyconic military grid is prescribed by Section VII, AR 300-15, for use on all military maps of the United States. This system is laid out in zones 9 degrees wide in longitude with 1 degree of overlap between zones. It is so inaccurate at long ranges in certain directions that it cannot be used satisfactorily for the control of the fire of coast artillery weapons or heavy field artillery. 2.02. Because of this inaccuracy, the coast artillery harbor defense grid for area in the neighbourhood of the harbor defences in the continental United States is also authorized in paragraph 28, Change No.4, AR 300-15. This harbor defense grid system is a Lambert conic conformal designed particularly to serve the guns of the harbor defense concerned. It is not only not connected to the military grid system in the same area but is incompatible therewith. 2.03. Many other grid systems are in use not only in the Unites States but also in the rest of the world. Twenty states of the Unites States have adopted the state plane coordinate systems measured in feet and especially designed to serve the particular state in question. Each such system is hardly extensible beyond the borders of the state without the introduction of mater- ial inaccuracies. The enclosed map shows the overall picture of the grid systems used in allied military operations during the recent campaigns. (Incl. 1) 2.04. It is obvious that the presence of so many systems complicates map preparation and impose material confusing handicaps on actual combat operations. The presence of more than one grid system covering one area presents no particular problem in peace time or on manoeuvres involving but one arm. When the fog of war confuses men's minds, the presence of several coordinate systems in one area for use of different arms in fraught with potent opportunity for disasters resulting from uncoordinations attributed to mistakes in using the military grid. Involved in this matter are branch pride and branch stubbornness, each branch feeling justified in having a special grid system designed to the particular capabilities and needs of that branch. An example of this occurred in the United Kingdom whore the British coast artillery, Navy and Air Force covered the coastal area with three incompatible, incommensurable grid systems. Intolerable confusion which resulted from the use of these grids during the numerous German air raids in the Battle of Britain makes it highly probable that these conflicting systems would have led to at east a few local disasters has there been an invasion of Great Britain. 3. Basic Requirement 3.01. Primary Purpose of a Grid. The primary purpose served by the military grid on a map is to provide quick solutions to problems of distance and azimuth for the firing of weapons. It provides a quick simple means for referring to spot locations and for designating targets. It is an essential tool in coordination of military operations. 3.02. The coordination of the efforts of the many arms used on land, sea, and air, is a problem so complex as to make mandatory a single simple solution for problems of target designation and determination of range and azimuth. This requirement is believed to be so important in war that the use of a single system of limited but adequate accuracy is held to be better than the simultaneous use of two incompatible but otherwise more accurate systems. 3.03. The characteristics of the using arms and weapons which affect the design of the system to the adopted involve relatively little research. As a general rule, it has been assumed that permanently emplaced batteries will be more accurate in their fire than batteries temporarily emplaced in the fields. Therefore, the following table appears to provide sufficient criteria to determine the desirable accuracies of the grid system adopted. Probable Errors of Different Caliber Permanently Emplaced Guns at Ranges Shown ------------------------------------------------------------------------ Minimum Probable Probable Errors in Yards Relative Errors -------------------------------------------------------------- Range in 6" Gun 8" Gun 16" Gun Yards Range Defl. Range Defl. Range Defl. Range Deflection 10,000 22 2 68 3 18 3 1:555 1:5,000 15,000 35 4 70 5 28 4 1:535 1:3,750 20,000 52 6 73 8 40 6 1:500 1:3,333 25,000 68 8 77 13 52 7 1:480 1:3,571 30,000 83 19 63 9 1:476 1:3,333 35,000 73 10 1:479 1:3,500 40,000 80 10 1:500 1:4,000 45,000 *77 *7 *1:584 *1:6,428 ------------------------------------------------------------------------ * These values are appear unusual 4. Desirable Characteristics 4.01. Primarily a grid system should be accurate enough for all weapons and all military uses other than for very long distance missiles, should be quickly applicable to any previously ungridded native, map, should yield readily to simple computing methods and should provide simple numerical designators for location of targets. 4.02. Plane System. The system of coordinates desired is one with which all computations for the most accurate artillery firing can be simply yet accurately performed and especially one in which the integrity of angles is preserved. A mathematically exact graticule, such as that presented by the meridians and parallels, requires the use of geodetic functions to solve the spherical triangles involves, and entails a long, time-consuming complicated computation. Moreover, due to the convergence of the meridians, the arc of the parallel intercepted between any two meridians becomes shorter as the latitude increases. Complicated geodetic formulas would be necessary in the computation of any distance except one along a meridian. Complex fire control instruments would be needed, named by personnel highly trained in a branch of advanced mathematics. Neither the personnel, the instruments, nor the time are normally available. As a consequence, the system adopted should be one in which plane trigonometry can be employed in the solution of triangles. In such a plane system for general application to large area, the simplest and quickest computations can be secured through use of a grid network of equally spaced parallel and mutually perpendicular lines. 4.03. Grid Accuracy. A high degree of accuracy is, of course, desirable. However, grid accuracies which are greatly in excess of the accuracies for the most precise weapon using the grid appear to be neither necessary nor practicable. By reference to paragraph 3.03 above, it will be noted that the probable errors of artillery weapons are much greater in range than are their probable errors in deflection. The minimum probable error of permanently emplaced guns rarely is less than 1/555 in range and 1/5,000 in deflection. Consequently, a suitable military grid should be one designed to conform to these minimum probable errors. 4.04. Adaptability to Various Projections. The grid system selected should be adaptable for use of native maps without complicated recomputation or redrafting of that map. There are many map projections used in the making of large scale maps throughout the world. It is desirable to be able to overprint the adopted grid system on any or all of these projections without the introduction of errors in range and azimuth beyond that probable in good artillery practice. 4.05. Unit of Measure. Three general systems of linear measure are commonly encountered, on maps and in grids: the metric system, the so-called English system, and the nautical system. Mixtures of these systems unfortunately are prevalent. This matter is further complicated by the fact that three differing elements are involved - map quantities, grid quantities, and the quantities employed by using arms and weapons. a. Map quantities include azimuths, horizontal distances, contour intervals, and underwater depths. To the map user, the unit of measure in which horizontal distances on a map are expresses is not particularly important, as the conversion from map distances to ground distances is frequently done graphically against either an appropriately graduated bar scale on the map or range scale. However, the unit of linear measure used in the basic survey of the map may complicate the computation and compilation of trig lists for fire control. This latter operation is already quite complex due to the differing origins of longitude, datum planes, spheroids and schemes of projection, and other variations encountered in the native surveys of the world. Thus, the conversion from one unit of linear measure to another incommensurable unit adds an operation subject to mistakes and affecting final accuracies. b. Contour intervals and spot elevations should, but may not, be in the same unit of measure as the horizontal distances, in order to provide for the ready calculation of true slant ranges, defilade, mask, profile, etc. c. Underwater depths are generally expressed either in meters or in fathoms, although shoal water depths may be also expressed in feet. It is highly desirable that those units of measure be the same as the horizontal unit in order to be readily useful in the computation fo underwater profiles and beach gradients. d. The military grid, while essentially concerned with angles and horizontal distances, must be precisely related to the computed geographic positions. The necessary correlation between the vertical unit of measure and the horizontal unit of measure on the grid as indicated in b above, is essential for the quick solution of problems involving defilade, mask and true gun target distance. e. The using arms and weapons are not entirely coordinated in the units of measure employed in the laying of the piece. The Coast Artillery measures azimuths in degrees and hundredths of a degree from grid south as the origin. The Field Artillery measures angles in mils, with filed orientation of base circles. The Coast Artillery measures its range in yards, while the Field Artillery may measure it in yards or meters. Due to the tangent relationship of the mil, Field Artillery can readily transpose from angular measure to linear distance in either meters or yards. Each artillery weapon is served and laid by employing a multiplicity of tabular information, plotting tools, and gunner's instruments. All these things must be related to the unit of measure selected for map and grid quantities. At the present moment, due to the recent tremendous concentration of field artillery weapons in the European campaigns and to the use of the metric system throughout in that area, our Field Artillery is well equipped and trained in the use of the metric system. The Seacoast Artillery of the United States, including the Panama canal and Oahu, are not so equipped or trained. They use the yard-hundredths of a degree system, except in the coast defenses of San Diego where the coast Defense grid is graduated in feet rather than in yards. f. Existing Conditions. The majority of the large scale maps of the world are made on the metric system. Exceptions to this rule are the United States, Canada, Australia, United Kingdom, Union of South Africa, India, Melanesia, and Middle East. The following table shows the unit of measure of native maps and military grids employed in operational areas of the recent campaigns. MAP UNITS GRID UNITS ------------------------------------------- ------------------- AREA HORIZONTAL UNIT VERTICAL DEPTH UNIT GRID GRID TYPE (Map Bar Scale) UNIT (Map (Bathymetric UNIT Contour) Contour) ----------------------------------------------------------------------------- 1. France Meter Meter Meter Meter Lambert 2. Germany Meter Meter Meter Meter Trans. Merc. 3. Italy Meter Meter Meter ----- ----- 4. Tunisia Meter Meter Meter ----- ----- 5. Libya Meter Meter Meter Meter Trans. Merc. 6. Egypt Meter Meter Fathon Meter Trans. Merc. 7. Okinawa Meter,Cho Meter Meter Meter Unknown 8. Burma Miles Foot Fathom Yard Lambert 9. China Li,meter Meter Fathom Yard Lambert 10. Russia Meter Meter Foot Meter Trans. Merc. 11. Hawaii Mile Foot Fathom Yard Polyconic 12. Philipines Mile Foot Fathom Yard Polyconic 13. Poland Meter Meter Meter Meter Stereographic 14. Holland Meter Meter Meter Meter Stereographic 15. Belgium Meter Meter Meter Meter Bonne 16. Japan Meter,Cho Meter Meter Meter Trans. Merc. 4.06. Width of Zone. An inherent fault of any system of plane coordinates applied to the surface of a spheroid is the fact that inaccuracies increase as the zone is extended east and west or in other cases, as the belt is extended north and south. It is also desirable, although not entirely necessary, to keep at a minimum the deviation of grid north from true north. This deviation likewise increases materially as the distance from the central meridian increases. These inaccuracies can be kept within reasonable limits by the adoption of narrow grid zones. It has been stated only semi-facetiously that there are three military engineering axioms: a. It always rains in war. b. It's always too cloudy to get aerial mapping photographs. c. Battles are always fought on grid junctions. This Inst axiom is spoken from the depths of bitter experience, rendering it obvious that a grid zone should include as much area as possible so as to obviate too frequent junctures between grid zones on the battlefield. However, this desirable criterion cannot be widely applied without including intolerable inaccuracies of the grid. Elimination of the undesirable features consequent upon fighting a battle on a grid juncture can be partially accomplished by providing for overlap between grid zones. The 9 degree width of the military grid system presently prescribed for use in the United States introduces appreciable inaccuracies near the edges. A reduction in width to 6 degrees betters this situation materially. The computation of ranges and azimuths where the gun position is located in one grid zone and the target in another can be provided for by a half degree overlap between grid zones, enabling the coordinates of the gun zone to be extended a half a degree into the grid zone in which the target is located. 5. Comparison of Grids 5.01. Polyconic Grid. For military purposes, a grid may be regarded as a set of perfect squares ruled on a plane map, scale 1:1, and then transferred to the earth's surface. Evidently after being transferred to the earth's surface the squares will no longer be perfect; and distortions they will have received in being put on the surface of the earth will reflect the distortions of the projection used for the map. a. The polyconic projection is defined as one which the central meridian and all parallels are mapped to scale and with true curvature. All other lines are stretched, the amount increasing as the square of the distance from the central meridian, and being greatest for north-south lines. Angular errors also appear, increasing with distance from the central meridian. Of course it is possible to compute these errors, at least roughly, and to allow for them, and this is regularly done by engineer survey troops. But the corrections are generally considered beyond what is to be expected of artillery units in the field, and for that reason all mention of them is omitted in artillery technical manuals, even when survey procedures are discussed. It is proper, therefore, to compare the errors of the projection as shown in the following table, directly with the errors of the guns (Section 3.03). Errors of U.S.Military Grid at 4°30' from Central Meridian, and 30° Latitude ------------------------------------------------------------------------------------------------- | | | True | True Azimuth 0° | True Azimuth 45° | Azimuth 90° True |----------------------------|-----------------------------|---------------------------- Range | Range Rela- | Defl. Rela- | Range Rela- | Defl. Rela- | Range Rela- | Defl. Rela- (yds) | Error tive | Error tive | Error Defl. | Error tive | Error tive | Error tive | (yds) Error | (yds) Error | (yds) Error | (yds) Error | (yds) Error | (yds) Error ---------|--------------|-------------|--------------|--------------|--------------|------------- 10,000 | 23 1:435 | 0 0 | 12 1:836 | 12 1:836 | 0 0 | 0 0 30,000 | 70 1:428 | 4 1:7500 | 35 1:859 | 35 1:859 | 0 0 | 0 0 40,000 | 70 1:428 | 4 1:5000 | 47 1:850 | 47 1:850 | 0 0 | 0 0 It is evident that at 40,000 yards, and an azimuth of 45°, the error of the grid in deflection is almost five times the probable error of a 16-inch gun. Errors of the above amount are characteristic of the s0-called non-conformal projections, i.e., those in which the shaped, as well as the scale of small areas is distorted. Such non-conformal grids were widely used prior to World war I, but most of them have been abandoned in recent years, chiefly, no doubt, because of the breakdown of the old French Bonne grid during the War. In addition to its lack of comformality, the polyconic projection possesses the disadvantage that it has not been studied thoroughly from a mathematical standpoint. Hence the small corrections needed for precise surveys are not known; the transformation from other grids to be polyconic is not known; not even the transformation from one polyconic belt to another has been studied. b. So far as grid junctions are concerned, the polyconic is theoretically excellent; it can be extended indefinitely both north and south, so that the world can be divided up into meridianal strips. In practice, the present World Polyconic has two latitudinal junctions, one near 24°, due to failure to put the origin of the old U. S. grid sufficiently far south; the other is near 49°, and is due to inaccuracy in the old tables which amounts to 1.1 meters. c. The polyconic grid is not well suited for foreign maps due to its lack of conformality. By the older laborious hand methods of grid plotting, this introduced no difficulties other than laborious calculations; but the use of the coordinatograph, for rapid plotting of grids and projections, requires a conformal grid. 5.02. Cassini-Soldner Grid. This is a non-conformal grid, very similar to the polyconic, and open to the same objections. It differs only in that the grid east-west lines, rather than the parallels are represented to true scale and with true curvature. 5.03. The Bonne Grid. Both meridians and parallels are represented to true scale on the Bonne projection; the error shows up on lines which run NE to SW, or NW to SE. It is just as bad as in the case of the other non-conformal projections; and this projection has been generally abandoned. 5.04. The Stereographic Grid. The stereographic grid may be briefly defined as a conformal grid (that is, one having zero angular distortions for small distances, and very small angular distortions for any distance) in which the scale error is Zero on a standard circle. This grid is conformal insures that within about 200 miles of the center- point, the error in deflection will be less than the error of the most accurate guns. The range error is considerably larger than the deflection error , but is considerably less than the range error of permanently emplaced artillery. Unfortunately, this grid cannot be extended more than 300 miles from its center point and grid zones are circular in Shape. It is quite suitable for small roughly circular countries such as Poland, Holland or Romania, which use it ; but on a world-wide basis It would lead to a great multiplicity of grid junctions, and points where three or more grids meet could not be avoided. 5.05. Lambert Grid. Like the stereographic, the lambert is a conformal projection. It may be defined as a conformal projection in which the scale errors are zero along two parallels . It is well suited to the mapping of moderately large areas , and has been extensively used by the British and French, especially in recent years. The numerical values of the errors are similar to those for the Transverse Mercator given in the next paragraph. The errors are very small in deflection, as in necessary for artillery grid. It is readily adaptable to gridding maps On other projections. In general a slight change of scale only would be Required. On the other hand, the rapidly increasing grid declination makes it impracticable to extend the grid more than 15° from the central meridian (except along the Equator , where grid declination is always zero). For this reason, the British and French were forced to introduce numerous zones, and to permit junctions of three grids at the same point. These numerous grid zones necessary, both north-south and east-west, make the Lambert undesirable for extensive coverage 5.06. Transverse Mercator Grid. The Transverse Mercator grid may be defined as a conformal grid in which the central meridian is represented by a straight line at true scale. it is well suited to largo areas, and is being used by the Germans, Russians, British, and Japanese. The errors at a given point vary little in all azimuths and average values for different ranges are given in the following table for 30° north latitude and for 3 1/2° from the central meridian. ------------------------------------------------------------------- | | Transverse | Transverse | | True | Mercator Grid | Mercator Grid | | Range | Range Relative | Deflection Relative | | (yds) | Error Error | Error (yds) Error | | | (yds) | | |--------|-----------------------------|--------------------------| | 10,000 | 10 1:1000 | 0 0 | | 30,000 | 30 1:1000 | 3 1:10000 | | 40,000 | 40 1:1000 | 5.8 1:6900 | |--------|-----------------------------|--------------------------| Obviously, the grid is well suited to artillery purposes since the inevitable errors ere thrown into range rather than deflection. The grid can be extended indefinitely in latitude like the polyconic. Hence it never necessary to have a grid junction involving more than two grids (except, of course, near the Poles). Transformation of coordinates from one bolt to another can be done by a formula already worked out. The formula is always the same, and is very simple in character. The grid declination will remain moderate throughout the belt. The grid can be readily adapted to use on other projections. Much theoretical work has already been done on this subject by a large group of mathematicians, including especially Professor W. K, Hristow. Extensive computations, especially for the Balkan countries, were done by the German High Command (O. K. H. ) during World War II which could, in an emergency, be promptly utilized if the proposed projection is adopted. In addition, much geodetic data of foreign areas on file at Army Map Service are on this system. The projection is well suited for converting data on various spheroids to a common basis. Transverse and lower orders of triangulation may be computed and adjusted directly on the grid due to its conformality. This feature, which is a large saving in field and office, is not practicable where a non-conformal projection such as the present Polyconic is used. 5.07. Tabular Comparison of Grids. ____________________________ -------------------------------------------------------------------------------------- GRID SYSTEM APPLICABILITY GRID MAXIMUM MAXIMUM TO FOREIGN MAPS** JUNCTIONS RELATIVE RELATIVE RANGE ERRORS* DEFLECTION (45,000 yds) ERRORS* (45,000 yds) -------------------------------------------------------------------------------------- Polyconic Very Poor Few & simple 1/1228 1/2454 Cassini-Soldner Very Poor Few & simple 1/1228 1/2454 Bonne Very poor Many & complex 1/2454 1/615 Stereographic Good Many & complex 1/2454 1/15,360 Lambert Good Many & complex 1/2416 1/7,663 Transverse Mercator Excellent; much work already done Few & simple 1/2416 1/7,663 --------------------------------------------------------------------------------------- ** A grid system is considered applicable to a foreign map if it can be put on most maps without changing map or grid except in scale. * Range and deflection errors are maximum values within 160 miles from the center of the projection, whether the center is a line, as in the Transverse Mercator, Lambert, Cassini-Soidner, and Polyconic, or a point as with the other two. The figures are based on GSGS "Survey Computation". 160 miles is the approximate distance (at 40° of latitude) from the center of the proposed Transverse Mercator zones to the junctions, about 3° of longitude. The actual maximum errors of the present world Polyconic grid are considerably larger, since the grid zones are 9° in, width. 6. Conclusions as to System to be Adopted. 6.01. The Lambert Orthomorphic projection is conformal but is not suitably as it requires grid zone junctures both north and south and east and west. The polyconic grid system now prescribed for use as military grid on all maps of IJ. S. is inaccurate in both azimuth and distance. The greater inaccuracy is in azimuth and is more than the probable error in deflection of permanently placed guns. The transverse mercator grid is conformal and is immediately applicable without plottable error, to the majority of the map projections commonly encountered on the native maps of the world. The transverse mercator grid reduces inaccuracies to a point where they are compatible with the accuracies required by all modern artillery weapons. This grid is sufficiently accurate to eliminate the necessity for a special Coast Artillery grid in the vicinity of coast defense locations. 6.02. In view of the foregoing, a military grid system based on. the transverse mercator projection applied to the local spheroid and measured in meters, or in the standard unit of the country concerned, should be applied in zones running from Latitude 80° N to Latitude 80° S, 6 degrees of longitude wide, with one degree of overlap (1/2 degree each side). The latitude of the origin is the equator. (Incl #2). The false casting to be applied for each zone would be 500,000 meters or yards. Scale factor on the C. M. should be 0.9996. The zones should be numbered, commencing with Zone 1, with its western edge at 180° longitude, running east to 174° west longitude. Consecutively numbered zones continue eastward by successive steps of 6 degrees until reaching the point of beginning; these number designations being identical to the I.M.W 1:1,000,000 layout. It will be noted that in certain countries where the native maps use the English units in elevations. and contours, such as the U. S., Canada, Australia, India, the proposed grid system should be graduated in yards rather than meters. In certain training areas in the U. S., both metric and yard grids will be required for training purposes. Where the metric Grid is used in the domestic U.S., the spot elevations should be in meters and the contours should be converted to a metric interval, provided that such conversion of contours shall be limited to those maps to be used for metric training purposes. 7. Proposed Specifications Projection: Transverse Mercator. Spheroid: Same as that used to compute the triangulation of the area. Unit: Meter in most areas; yard in U. S. and other areas where the English system is firmly established. Central Meridians: 3°E (or W) of Greenwich and every 6° thereafter. Latitude of Origins: 0° False Easting: 500,000 meters (or yards) . False Northing: 0 for Northern hemisphere 10,000,000 for southern hemisphere. Scale Factor: 0.9996 Zone Width: 6° of longitude (plus 1/2° overlap at each edge) Limits of Zones: North 80° latitude South: 80° latitude Zone Numbering; Commencing with Zone 1 east of 180° longitude, and continuing easterly around the earth. (Identical to I. M. W. system designation) Limits of Tables: North: -80° latitude South: -80° latitude 8. Implementing Actions and Costs 8.01. It should be noted that the application of the transverse mercator grid system should be progressive rather than instantaneous. Priorities for conversion are indicated as follows: a. Military areas in the United States, b. Mapping and map revision of foreign areas embraced in the 20-year strategic mapping plan approved by the War Department. c. General areas of the United States as stocked by the Army Map Service. d. Other maps of foreign areas as reissued. Upon the issue of the new map in any area, the new grid will normally be shown in full, but to safeguard against the event of the occurrences of an emergency while a series is still in a state of partial conversion, the maps will carry marginal marks to permit easy plotting and overprinting of the old grid. 8.02. Since Amy Map Service and map depots in the theaters now hold extensive stocks of maps carrying the expedient war-time grids, It is to be expected that the proposed standardization of the transverse mercator grid automatically renders obsolescent these stocks. The cost of a conversion in this respect is estimated as follows: a. Cost of conversion of points and correction of drafting copy (1) United States areas $99,500 (2) European areas $103,000 (3) Other overseas areas $22,000 b. Cost of replacement of stocks to be retired (1) United States areas $ -0- (2) Overseas areas $10,000 Since all United States maps are to ho converted to military scales (1/25,000, 1/50,000), new stocks are to be prepared in any event. Overseas accumulation of war time maps, it has been reported, are being salvaged except for small reserves which will probably not be replaced. The $10,000 figure should be ample to provide for all requisitions directly attributable to the change in grid. The cost of now authorizing the proposed conversion is properly to be weighed against the much greater cost that would be borne should circumstances require the conversion ten years hence. The conversion must ultimately be made in view of the inadequacies of the present medley of grids to suffice for the anticipated requirements of another war. It is considered unquestionable that the cost of the conversion should be accepted now if it be agreed By the General Staff that the transverse mercator grid is in fact the correct design for the future, based on what can now be discerned as to future characteristics requirements. 8.03. It is suggested that the views of the Navy Department be obtained prior to final standardization in view of the application of the military grid to maps and charts for amphibious operations. It would also be desirable to coordinate the design so far as possible with the Director of Military Survey, War Office, London, who has expressed his general views in an informal letter (Incl. #3).
ARMY MAP SERVICES
Recommendations for Military Grids
6 December 1946
A link to a pdf of the original document
ARMY MAP SERVICES Corps of Engineers, U.S. Army 6 December 1946 MEMORANDUM TO: Chief of Engineers SUBJECT: Recommendations for Military Grids 1. Included herein are certain recommendations for grid numbers and grid references. A pertinent discussion and background information follows each recommendation. 2. The Universal Transverse Mercator Grid supersedes approximately 85 previously used grids which made up an undesirable heterogeneous system. This modernization should be further expanded to revise the outmoded standards for grid numbers and grid references which were designed primarily for fire control purposes only. The inadequacy of the present system for use in making general grid references became apparent during the past war. To satisfy their needs it was necessary for the individual theater commanders to devise new methods to fill this deficiency. There was an unfortunate lack of consistency for the systems used varied with the theater. Before formulating these recommendations an exhaustive study was made of all the war-time provisional systems. The best of each is incorporated within these recommendations, which if adopted would assure a standard but simple fool-proof system, designed, at the same time, to accommodate changing techniques in warfare. 3. GRID INTERVALS a. RECOMMENDATION - It is recommended that grid intervals be: Maps 1:5,000 and larger 1,000 yards (or meters) with grid lines ticked at 100 yard (or meter) intervals. Maps 1:10,000) 1:25,000) 1,000 yards (or meters) 1:50,000) Maps 1:100,000) 1:250,000) 1,0000 yards (or meters) b. The grid intervals authorized at present are: Maps larger than 1:5,000 100 yards Maps 1:5,000 to 1:63,360 inclusive 1,000 yards Maps smaller than 1:63,360 to larger than 1:100,000 5,000 yards Maps 1:100,000 to larger than 1:400,000 10,000 yards Maps 1:400,000 to 1:500,000 inclusive 50,000 yards c. The intervals of British grids are: Maps larger than 1:5,000 100 meters (or yards) Maps 1:5,000 to 1:100,000 inclusive* 1000 meters (or yards) Maps smaller than 1:100,000* to 10,000 meters (or yards) 1:500,000 d. It is noted that according to the new edition of AR 300-15, authorized map scales are: Small scale (1:1,000,000 Medium Scale (1:250,000 (1:100,000 Large scale (1:50,000 (1:25,000 (1:10,000 (1:5,000 e. The war proved that generally the British grid intervals were superior. The U.S 5,000 yard interval was awkward and confusing in as much as the abbreviated reference for a common point on maps of different scales would be dissimilar in all instances. Authorization should be granted to revise the grid intervals to overcome this defect and to make them more compatible to the revised authorized map scales. 4. GRID REFERENCES a. RECOMMENDATION - To satisfy particular needs two types of grid references should be made standard: general references, and fire control references. (1) General reference - Such a reference should generally consist of the grid zone designation by a group of numbers expressing the E and N coordinates of the referred point; examples: 30 NC 80432864 27 SF 69143872 (1,000 unit reference) 30 NC 804286 27 SF 691387 (10,000 unit reference) ----------- *In all except Europe, AMS sheets of 1:100,000 falling in British Grid areas were gridded at 10,000 meter (or yard) intervals (a) Grid zones 1. Zones for the Universal Transverse Mercator grid are identified with the IMW column (6° E-W) numbers, starting at the international date line (180° meridian) and reading 1 to 60 in an easterly direction. (See attached index). To prevent similar references for points 1,000,000 units apart (north-south) the IMT row letters preceded by N (for north) or S (for south) should be incorporated within the system and added to the zone number designation. Under the IMW plan, each row (4° N-S) is assigned a letter of the alphabet starting from the equator, preceding in both directions. 2. To assure proper identification each sheet should carry in its grid reference box its complete zone identification. 3. Within an area assigned to an army the grid zone designation may be deleted at the discretion of the Commanding General for reporting within the grid zone providing sender and receiver are not more than 500 miles apart in a N-S direction. (The zone designation is necessary in such a case since the numerical reference is the same at 1,000,000 units in a N-S direction). For reports to higher headquarters, however, the complete reference must be given. (b) Numerical reference - To facilitate making such references from a 1,000 unit grid, a reference should be simply an eight digit number; for example: 80472866. The "804" represents the 100,000, 10,000 and 1,000 digits of the easting grid line to the west of the referenced point, the "7" represents the estimated tenths from the easting grid line to the point, the "286" represents the 100,000, 10,000 and 1,000 digits of the northing grid line south of the referenced point, and the "6" represents the estimated tenths from the northing grid line to the point. To maintain a relationship between similar grid references from different scale maps, a reference from a 10,000 unit grid should be a six digit number; for example: 804286. The "80" represents the 100,000 and 10,000 digits of the easting grid line to the west of the referenced point, the "4" represents the estimated tenths from the easting grid line to the point, the "28" represents the 100,000 and 10,000 digits of the northing grid line south of the referenced point, and the "6" represents the estimated tenths from the northing grid line to the point. (2) Fire control references to be used within the sphere of the equivalent of one adjacent 1:50,000 sheet in all directions (two 1:25,000 sheets, four 1:10,000 sheets, etc.) - Existing methods for determining grid references for fire control as outlined in FM 6-40, Part Four, Chapter 2, should be retained with but one modification: Sheet name designations should never be used. When a grid reference is being sent to a station outside the sphere of the equivalent of one adjacent 1:50,000 sheet in all directions (for example: a long range gun), then the full grid reference should be sent preceded by the zone designation (see (1) above); for example: 30 NC (804.72-1286.68) b. Existing regulations (See FM 6-40, Part Four, Chapter 2) designate the following methods for reading a grid reference: (1) Designation of sheet, parenthesis, X coordinate, decimal, location to nearest yard, a dash, Y coordinate, decimal, location to nearest yard, parenthesis. Example: Annapolis (804.729-1286.684) (2) When the map is definitely understood, its designation may be omitted. Example: Annapolis (804.729-1286.684) (3) If the location to the nearest 10 or nearest 100 yards only is desired, or if the measurements cannot be made with greater accuracy, the digits indicating units or tens may be omitted. Examples: (a) (804.72-1286.68) to nearest 10 yards (b) (804.7-1286.7) to nearest 100 yards (4) For expediency it is permissible to include only two digits to the left of the decimal point (10,000 and 1,000 digits), omitting any preceding digits. Examples: (a) (04.729-86.684) (b) (04.72-86.68) (c) (04.7-86.6) (5) If the point is fixed within an area 10,000 yards square, only one digit need be given before the decimal point of each coordinate. Examples: (a) (4.729-6.684) (b) (4.72-6.68) (c) (4.7-6.7) (6) If a large number of points are being designated by the abbreviated coordinates shown in example (c), the decimals and dashes may be omitted and the reference given as (4767). c. References for British Grids are read according to the following methods: (1) Maps bearing a 10,000 unit interval (1:100,000 to 1:500,000); letter of 500,000 unit square (written as a small capital letter), letter of 100,000 unit square (written as a large capital letter), 10,000 digit of easting line to the left of the point, estimated tenths (1,000 units) eastward to point, 10,000 digit of northing line south of the point, estimated tenths (1,000 units) northward to the point. Example: cA1428 This locates point to nearest 1,000 units. (2) Maps bearing a 1,000 unit interval (1:5,000 to 1:100,000 inclusive): Letter of 100,000 units square, 10,000 and 1,000 digits of easting line to left of point, estimated tenths (100 units) eastward to point, 10,000 and 1,000 digits of northing line south of the point, estimated tenths (100 units) northward to the point. Example : A143286 This location point to nearest 100 units. d. During the war, the Pacific and Southwest Pacific Commands found it feasible to use a system for reading general grid references similarly to that used with British Grids. Apparently, a broad interpretation of existing regulations was made to find authority for the change. The name of the map is not mentioned (authority: see 4 b (2) above); digits to the left of the 10,000 and 1,000 unit digits are omitted (authority: see 4 b (4) above); decimals and dashes are omitted (authority: see 4 b (6) above). (1) To read a reference point on a map employing a 1,000 unit interval read: the 10,000 and 1,000 digits of the casting line to left of point, estimated tenths (100 units) eastward to point, the 10,000 and 1,000 digits of the northing line south of the point, estimated tenths (100 units), northward to the point. Write as a 6 digit continuous number. Example: 143286 (2) A similar procedure is followed in reading a reference on a map using a 10,000 unit interval, except that the digits for the grid lines are for the 100,000 and 10,000 units (the last four digits being omitted) and the estimated tenths represent 1,000 units. Thus, a reference for the same point cited in (1) above, might read: 214128 e. Discussion of recommendation (par. 4 a (1), above) for: General references. (1) Experience in the Pacific Theater proved that general grid references were frequently used. Usually it was unnecessary that these general grid references possess the same accuracy as that required for fire control purposes. It was deemed sufficient to identify any general grid reference to the nearest 1/10th of the grid interval (i.e., 100 units at a 1,000 unit grid interval; 1,000 units at a 10,000 unit grid interval). The system which employed a continuous six digit number as a grid reference (example: 143286) proved highly successful. Its principal merits wore simplicity and intelligibility. The standard method for reading grid references )see par. 4 b (1), above) was primarily designed for fire control purposes and when used for general purposes becomes very awkward. This was the experience in the Pacific Theater which found that sheet name designations, parentheses, decimal points and hyphens were superfluous and only increased the time necessary to reading and sending general grid references. (2) There were two faults with the Pacific system: danger of confusion between a reference taken from a map bearing a 1,000 unit interval and from one of a 10,000 unit interval, in as much as both were six digit numbers; and lack of connection between references for a common point taken from a 1,000 unit grid and from a 10,000 unit grid, in as much as in reading a reference from a 1,000 unit grid the principal digits were the 10,000 and 1,000 ones and for a reference from a 10,000 unit grid the principal digits were the 100,000 and 10,000 ones. Thus, references for a common point might read: 047866 (from a 1,000 unit grid) and 804286 (from a 10,000 unit grid). (3) Under the ANS proposal these faults would be eliminated. An eight digit reference would immediately be recognized as being from a 1,000 unit grid, and a six digit as being from a 10,000 unit grid. Further, a coordination would exist between references from different unit grids for common points, as: 80432863 (reference from 1,000 unit grid) 804286 (reference from 10,000 unit grid) (4) Normally, under the system as proposed it is required that in referring a point the entire reference be given - grid zone designation and numerical coordinates. In reporting in a single grid zone between points not more than 500 miles apart in a N-S direction designation of the zone is unnecessary. Consequently, if he is certain that no confusion will result, the theater commander should be permitted to issue instructions to omit the zone designation from grid references. However, in reporting to higher headquarters, between grid zones, and between points in the same grid zone, more that 500 miles apart in a N-S direction, the grid zone designation should never be omitted. The 500 mile rule is required since a reference will read the same for points which are 1,000,000 units apart in the same grid zone. (5) With the new type of warfare in which activities are far-flung it is important that references given in communications identify the area. The use of a sheet name as presently required by regulations is inadequate for the receiver would generally expand too much time searching map catalogues and indices to identify the locale of the sheet. To introduce such a reference with only the designation number of the grid zone would require the use of 1,000,000 digits in the numbers. This is not desirable as it would mean that the numerical reference would differ from that used for a local general reference, and would also require the use of decimal points and hyphens since the 1,000,000 digit might occur only with one coordinate. The solution is to introduce such a grid reference with the designation number of the grid zone followed by a sub-zone letter designation. (See paragraph 4 a (1) above). This makes an absolute identification. Its use would simplify the overall grid reference system in that the numerical reference would be the same for both an abbreviated general local reference and for a reference used in official communications to higher headquarters. The use of the sub-zone letter designation does not create a new system but makes complete utilization of the entire IMW numbering system whose row numbers are the basis of the numbering of the zones of the Universal Transverse Mercator Grid. (See attached diagram). f. Discussion of recommendation (par. 4 a (2), above) for: Fire control references - The system presently in use is generally quite adequate for its purpose. However, it is deemed more desirable to use grid zone designations instead of sheet identifications. (For arguments see paragraph 4 e above). 5.GRID REFERENCE BOX a. RECOMMENDATION - It is recommended that the grid reference boxes used in foreign areas on AMS maps be made standard practice for use on all maps including areas in the United Stats. The grid reference box should contain instructions for determining a general reference. b. The inclusion of a grid reference box in the margin will assure standard renditions of grid references, eliminating any reference to military manuals by personnel unfamiliar with grids. c. It is felt that grid references for fire control come within the category of special purpose and are not as widely used as general grid references as they generally are limited to artillery use. Consequently, the method of determining such references need not appear in the grid reference box but should be explained in proper military manuals (see par. 7). If considered necessary, reference to such manuals could be included in the grid reference box. 6. GRID NUMBERS a. RECOMMENDATION - It is proposed that a modification of the so-called Canadian Grid Numbering System be made standard on all maps published by the Army Map Service. Under the system, grid numbers would appear on all four sides of a sheet labelling each grid line, and "principal digits" would be shown on the face of the map labelling each grid line, appearing east or north of every accentuated grid line (every even tenth line - 10,000 on a 1,000 unit grid and 100,000 on a 10,000 unit grid). On a 1,000 unit interval grid except for the values shown in the southwest corner the last three digits of each grid number are omitted and the principal digits (100,000, 10,000 and 1,000) appear larger than the 1,000,000 digit; for example: (corner) 1 276 000 yds. 1 277 1 278 Numbers for a 10,000 unit grid appear in a similar manner, except that the last four digits odf wach number are omitted; for example: (corner) 1 27 0000 yds. 1 28 1 29 b. Existing standard practice requires that on grids of intervals of 1,000 units the last three digits be omitted and that on grids of 10,000 units the last four digits be omitted. Regulations do not specifically limit the appearance, frequency or location of the numbers. c. The advantages of this numbering system are apparent: the numbers on the face of the map materially aid the map user in reading the grid and in determining references; the use of superior type around the border accentuates the principal digits (100,000, 10,000 and 1,000) materially aiding the map user in making general grid references. d. Under the system used in the Pacific for 1,000 unit grids, numbers appeared on all four sides of the sheet labelling each grid line. The last three digits of each number were omitted and the principal digits (10,000 and 1,000) appear larger than the 1,000,000 and 100,000 digits, as for example: (corner) 12 76 000 yds. 12 77 12 78 The principal digits also appeared on the face of the map labelling each grid line appearing at 10,000 unit intervals east or north of every 10,000 unit grid line (which are accentuated in weight). The modification to this system recommended in a, above, is necessary since the 100,000, 10,000 and 1,000 digits would appear in a grid reference as recommended in par. 4 a (1), above. 7. GRID MANUALS a. RECOMMENDATION - Subject to approval of the recommendations appear- ing in the preceding paragraphs, a recommendation is made that the Army Map Service be directed to prepare a new military manual covering the subject of grids, and to prepare the text necessary for any revisions to existing manuals. b. Investigation reveals that no military manual covers the subject of military grids completely. This is a serious omission and should be remedied. 8. It is felt that the above recommendation will materially improve the use of our grid system. The needs of the various grid users are provided for; a standardization is effected; and full use is made of knowledge gained through experience during the past war. W.H. MILLS Colonel, Corps of Engineers Commanding Officer.
Chairman of JMPC Ad-hoc Committee on Universal Military Grid Referencing System
A link to a pdf of the original document
27 February 1948 FROM: Chairman of JMPC Ad-hoc Committee on Universal Military Grid Referencing System To: Colonel Northrup, U.S. Army Captain Hobbs, U.S. Navy Colonel Tison, U.S. Air Force Reference: (a) JIC 410/M of 23 January 1948 Enclosure: (A) 1. In accordance with directive contained in par. 1 of reference (a), a committee consisting of Colonel Mills, Commanding Officer, Army Map Service (Chairman), Mr. Bloom of the Aeronautical Chart Service and Mr. Medina of the U. S. Hydrographic Office has devised a universal military grid referencing system which it considers suitable for the Armed Forces. 2. This is submitted for consideration. Enclosure (A) contains complete information on the system. It is requested that this proposal be transmitted to the operating forces for study. 3. Should the Army, Navy or Air Force believe that there is another system more suitable than that described in Enclosure (A), complete information regarding such a system should be submitted to this ad-hoc committee for investigation and consideration. 4. In view of the urgency for an early decision, action should be expedited. Approval, or any recommended changes, are desired by 15 April 1948. W. H. MILLS Colonel, Corps of Engineers Chairman, JMPC Ad-hoc Committee on Universal Military Grid Referencing System Copies: Navy: 25 Army: 50 AF: 25 Lt. J. R. Phillips, JMPC: 1 Joint Mapping Photography Committee Ad-hoc Committee on Universal Military Grid Referencing System A PROPOSED STANDARD UNIVERSAL MILITARY GRID REFERENCING SYSTEM 1. INTRODUCTION There is a mandatory and urgent need for a standard referencing system, for use by the Armed Forces.Such a system must have the following outstanding characteristics: a. It must meet the individual and collective requirements of the Army, Navy and Air Forces in such a way that all services speak the same language. b. It must insure positive identification of any point in the world, without danger of ambiguity,particularly at spheroid and datum junctions. c. It must be simple of understand, brief and capable of being abbreviated either for large-scale or for local operations; and adapted to the requirements of fighter pilots traveling at high speed. d. It must be suitable for rapid computations of range and azimuth, with the required accuracy. e. It must be usable in Polar areas. f. It must avoid difficulties arising from the reversal of sign at the 0 and 180th meridians and Eqautor. 2. PRESENT SITUATION a. Section IV, W.D.Circular No.33, 5 February 1937, establishes the Universal Transverse Mercator Grid as the official grid for the Department of the Army. Accordingly, all maps published by the Army since 5 February 1947 bear the UTM Grid. In the interests of consistency, the U. S. Hydrographic Office has also surprinted the UTM Grid on all approach and bombardment charts, and on all hydrographic charts designed for use in amphibious training exercises. The UTM Grid supersedes an undersirable heterogeneous system which included the World Polyconic Grid, the U. S. Polyconic Grid, the Panama Grid and approximately 80 so-called British Grids. Since the projection of the grid is conformal, the grid can normally be applied to map constructed on any the standard projections. (I) ---------------- I The merits of the UTM Grid and deficiencies of the others are discussed in Appendix I. b. The following are the grid referencing systems which are authorized and/or presently in use by the various armed forces(2); none can satisfactorily fill the requirements for a universal system as outlined in paragraph 1, above: (1) Fire Control Referencing (FM 6-40, 1 June 1945, Chapter 2, Section 1 , pp.163-164: also, see Appendix II-I): This is the system presently authorized for use by the Army. (a) Advantages: The system is suitable for rapid computations of range and azimuth;no difficulties arise from the reversal of sign at the 0° and 180° meridians and at the Equator. (b) Deficiencies: Designed originally for fire control use by the Army, it does not fill the needs of the Air Force and the Navy; it is not adaptable to world wide use; it does not provide for spheroid junctions; while it allows for abbreviation for large scale activities; it does not provide for referencing in the polar areas; it is lengthy and awkward due to use of sheet-names, decimals, hyphens and parentheses. (2) Pacific World War II Practice (see Appendix II-2): Finding the authorized referencing system inadequate, the commanders of the Pacific Theaters devised a new system to fit their needs. This was a compromise between the Fire control and British Grid referencing systems. To a certain degree, this alleviated but did not eliminate the deficiencies of the authorized system. (a) Advantages: The system is suitable for rapid computations of range and azimuth;no difficulties arise from the reversal of sign at the 0° and 180° meridians and at the Equator; a reference is brief and not complicated with decimals,hyphens and parentheses. (b) Deficiencies: While fairly satisfactory for the local needs of the Army an Navy, it did not fill the needs of the Air Force: it is not adaptable to world wide use; it does not provide for spheroid junctions; it does not provide for abbreviation; it does not provide for referencing in polar areas; while the awkwardness of the authorized system was eliminated, ambiguities in reporting outside grid zones could result. (3) British Grid Referencing (TM 44-225, section IX, pp. 70-72; also, see Appendix II-3): By agreement, U. S. Forces used the British Grids wherever they existed. ______________ 2 Regulations also provide for the Point Designation Grid (TM 44-225, 30 June 1944, Section V, pp. 63-64), the Jan grid (TM 44-222, Section VI, pp. 65-66), and the Thrust Line Method (TM 44-222, Section VII, p. 67). These are special purpose systems and their continued use will not be affected by the adaption of a standard referencing system. (a) Advantages: The system is suitable for rapid computations of range and azimuth; no difficulties arise from the reversal of sign at the 0° and 180° meridians and at the Equator; a reference is brief and not complicated with decimals, hyphens and parentheses. (b) Disadvantages: It does not fill the needs of the Air Force and Navy; it is not easily adaptable to world wide use due to lack of order and homogenity; it does not provide for spheroid junctions; while it permits slight abbreviation in local areas, no provision is made for similar abbreviation for large scale activities; it does not allow for referencing in polar areas; the number of grid and datum junctions was excessive resulting in frequent difficulty in rapid computation of range and distance when origin and destination were in different grid areas. (4) Air Defense Grid (TM 44-225, Section X, pp.72-79) (a) Advantages: The Air Defense Grid referencing partially satisfies large scale use of the Air Force. (b) Disadvantages: The system does not satisfy the requirements of the Army and Navy; the system does not lend itself to the use of the pilot in fighter support; while it is fairly satisfactory in reporting areas in world wide activities it is not satisfactory for reporting spot positions; while it provides for abbreviation, in certain areas if the first letter of the reference is dropped, the nearest similar reference is near enough to create ambiguity; it is not suitable for rapid computation of range and azimuth; it does not provide for polar areas; it is ambiguous at datum junctions. 3. PROPOSED SYSTEM a. General The proposed system is based on the Universal Transeverse Mercator Grid between 80° N and 80° s; in the polar areas it is based on polar Stereographic grids. (1) In conjunction with these grids, the reference system meets all the requirements for a referencing system as outlined in paragraph 1, above. (a) It provides for the individual and collective needs of the Army, Navy and Air Force. The basic principles followed by any of the armed forces in giving a reference are alike; a reference cited by any one branch will be readily recognized by all and will permit easy conversion when required. (b) It provides a positive and unambiguous identification for any point on the globe especially at spheroid and datum junctions. (c) Since the referencing in all cases follows the basic and simple system of reading "right-up", a reference is easily understood. A reference is brief and is capable of being abbreviated either for local or large scale activities, thus satisfying any and all needs. (d) It is well suited for rapid computation of range and azimuth. (3) (e) It is suitable for polar areas. Azimuth will agree with that now in use by polar aviators; this avoids the difficulties of meridian convergence which are a necessary feature of computations in latitude and longitude. (f) There is no reversal of sign at any meridian or any other junction of zones. (2) The system has the following additional merits: (a) The coordinates always increase to the east and to the north, except in the polar regions where the direction of positive coordinates is umambiguously indicated. (b) The system conforms to the spherical surface of the earth. The grid line can be considered as a system of coordinates whose position on the earth's surface is as exactly fixed as meridians and parallels. (c) As the grid is conformal, it can easily be applied to a map constructed on any of the conventional projections, unless they are so extended as to have unusually large distortions. b. First division - 8° NS X 6° EW rectangles (1) Between 80° N and 80° S the world is divided into rectangles 8° NS X 6° EW (See Exhibit E-H). The columns (6° wide )are identified by the Universal Transverse Mercator(UTM) Zone numbers -- that is,starting at the 180° meridian the columns are numbered from 1 to 60 consecutively proceeding easterly. The rows (8° NS) are identified by letters; starting from 80° south and proceeding northerly the rows are lettered consecutively from C to X (I and O omitted). The designation (called the grid zone designation) of such an 8° NS X 6° EW rectangle is determined by reading (right-up) first the column designation (as 54) and second row designation (as U); as: 54U (2) The north polar area above the 80° parallel is divided into two parts by the 0° and 180° meridians; the half beginning west of 0° is identified as Y; the half beginning east of 0° is identified as Z __________ 3 See Appendix I. (See Exhibit I). Similarly,the south polar area below 80° is divided into two halves by the 0° and 180° meridians; these halves are identified by A and B respectively. c. Second division - 100,000 meter squares (1) Between 80° N and 80° S each 8° X 6° rectangle is divided into 100,000 meter squares based on the UTM grid for zone. Every column of squares is identified by a letter; likewise, every row of squares is identified by a letter. (See Exhibits A and B). On the equator, starting at the 180° meridian, and proceeding easterly for 18°,the 10,000 meter columns,including partial columns (caused by convergence), are lettered A to Z (I and O omitted) consecutively. The 100,000 meter rows are labelled from A to V (I and O omitted) reading from south to north, with the partial alphabet being repeated every 2,000,000 meters. Every odd numbered 6° wide UTM zone will have the alphabet of the 100,000 meter row letters beginning at the equator; the even numbered 6° wide UTM Zones will have the alphabet of the 100,000 meter row letters beginning at the 500,000 meter northing grid line north of the equator. This staggering will considerably lengthen the distance between duplicating letters and will permit necessary manipulation along spheroid junctions. Below the equator the 100,000 meter row letters will continue consecutively following the plan of the letters above in the same zone. The designation of a 100,000 meter grid square is determined by reading (right-up) first its column designation (as X) and second its row designation (as Q): as: XQ. (2) Under this system a 100,000 meter square designation will not be repeated in an aera 18° NS 18° EW. This will normally eliminate the necessity of preceding grid references within such an area by the grid zone designation (54U in b (1) above) even though report is being made from as many as two grid zones away. (3) In the polar areas the 100,000 meter columns at the right angles to the 90° - 90° meridians are lettered from J to Z in zone designation Y and A to R in zone designation Z (I and O omitted; also omitted are D, E, M, N, V and W to avoid confusion with 100,000 meter squares in adjoining UTM zones.Starting at the 80° line the 100,000 meter rows at right angles to the 0° - 180° meridians are labelled A to Z cosecutively (I and O omitted). The identification of a 100,000 meter square consists of two letters, reading right-up (See Exhibit I). d. Grid references for U.S. Army (1) A U.S. Army reference shall consist of a number and a letter (the grid zone designation) followed by two letters (identifying the 100,000 meter square in which the point of reference lies), followed by a group of numbers expressing to the required accuracy the E and N coordinates of the referred point within the 100,000 meter square; examples: (a) 54UXQ (locating a point within 100,000 meters) (b) 54UXQ55 (locating a point within 10,000 meters) (c) 54UXQ5354 (locating a point within 1,000 meters) (d) 54UXQ539544 (locating a point within 100 meters) (2) Normally, a general reference is seldom located to an accuracy of more than the closest 100 meters. To provide for the needs of surveying and to anticipate any contingency, the following references are provided: (a) 54UXQ53925443 (locating a point within 10 meters) (b) 54UXQ5392354432 (locating a point within 1 meter) (c) 54UXQ539234544321 (locating a point within 0.1 meters) (3) Normally,all elements of a grid reference shall not be used. Those to be omitted will depend upon the size of the area of activities. Thus: (a) If activities are confined to an area not exceeding 18° EW X 18° NS,the grid zone designation (54U) usually will be omitted. In such an area, a reference to the closest hundred meters usually will read: XQ539544 (b) If activities are confined to an area not exceeding 100,000 meters NS X 10,000 meters EW,in addition to omitting the grid zone designation, the 100,000 meter square identification (XQ) will be omitted; the point will be referenced only by numbers. Thus, in such an area, a reference to the closest hundred meters will read: 539544 (c) Numerical reference: The numerical part of a reference taken from a 1,000 meter grid, will be a six digit number; for example: 539544. The "53" represents the 10,000 and 1,000 digits of the easting grid line to the west of the referenced point, the "9" represents the estimated tenths from the easting grid line to the point, the "54" represents the 10,000 and 1,000 digits of the northing grid line south of the referenced point, and the "4" represents the estimated tenths from the norhthing grid line to the point. (See Exhibit C). To maintain a relationship between similar grid references from different scale maps, the numerical part of a reference taken from a 10,000 meter grid will be a four digit number; for example: 5354. The "5" represents the 10,000 digit of the easting grid line to the west of the referenced point, the "3" represents the estimated tenths from the easting grid line to the point, the second "5" represents the 10,000 digit of the northing grid line south of the referenced point, and the "4" represents the estimated tenths from the northing grid line to the point. (See Exhibit D). e. Tad Grid Reference (1) A TAD reference shall consist of two letters (identifying the 100,000 meter square containing the point of reference (see paragraph 3 c, above), followed by four numerals (the 10,000 and 1,000 digits of the northing grid line south of the point and the 10,000 and 1,000 digits of the easting grid line west of the point, (the identification of the 1,000 meter grid square containing the point), followed by a letter (identifying the 200 meter grid square containing the point). (See Exhibit F). Example: XQ5354J (2) The first two letters (XQ) normally shall be omitted; they will not be used unless the reference is being reported more than 100,000 meters away. Thus, the usual TAD reference will be written simply as: 5354J (3) The p1an for lettering the 200 meter squares follows: A B C D E F G H I J K L M N O P Q R S T U V W X Y f. Air Defense references (1) A reference shall consist of the grid zone designation (as 54U), followed, if necessary, by two letters (identifying the 100,000 meter square containing the point), followed, if necessary, by a group of numbers expressing to the required accuracy the E and N coordinates of the referred point within the 100,000 meter square; (See Exhibit G). Examples: (a) 54U (locating a point within a 8° NS X 6° EW) (b) 54UXQ (locating a point within 100,000 meters) (c) 54UXQ55 (locating a point within 10,000 meters) (c) 54UXQ5354 (locating a point within 1,000 meters) (2) If reports are being confined to an area not exceeding 18° NS X 18° EW, the grid zone designation may be omitted and the reference read as: (a) XQ (locating a point within the 100,000 meters) (b) XQ55 (locating a point within 10,000 meters) (c) XQ5354 (locating a point within 1,000 meters) 4. CONCLUSION It is felt that the system outlined above is a homogeneous solution of the problem and will satisfactory fill the needs of the Navy, the Air Force and Army. The needs of the various grid users are provided for and a standardization is effected. APPENDIX 1 STUDY AND DISCUSSION OF MILITARY GRIDS by Army Map Service and Military Intelligence Division, Office, Chief of Engineers, U.S. Army 1. Purpose of Study The purpose of the following study is to determine the characteristics required in a military grid and to select a system most nearly answering these requirements. Marked disadvantages are inherent in most grid systems now used. These disadvantages are complicated by the existence of many incompatible systems. 2. Existing Conditions 2.01. The polyconic military grid is prescribed by Section VII, AR 300-15, for use on all military maps of the United States. This system is laid out in zones 9 degrees wide in longitude with 1 degree of overlap between zones. It is so inaccurate at long ranges in certain directions that it cannot be used satisfactorily for the control of the fire of coast artillery weapons or heavy field artillery. 2.02. Because of this inaccuracy, the coast artillery harbor defense grid for area in the neighbourhood of the harbor defences in the continental United States is also authorized in paragraph 28, Change No.4, AR 300-15. This harbor defense grid system is a Lambert conic conformal designed particularly to serve the guns of the harbor defense concerned. It is not only not connected to the military grid system in the same area but is incompatible therewith. 2.03. Many other grid systems are in use not only in the Unites States but also in the rest of the world. Twenty states of the Unites States have adopted the state plane coordinate systems measured in feet and especially designed to serve the particular state in question. Each such system is hardly extensible beyond the borders of the state without the introduction of mater- ial inaccuracies. The enclosed map shows the overall picture of the grid systems used in allied military operations during the recent campaigns. (Incl. 1) 2.04. It is obvious that the presence of so many systems complicates map preparation and impose material confusing handicaps on actual combat operations. The presence of more than one grid system covering one area presents no particular problem in peace time or on manoeuvres involving but one arm. When the fog of war confuses men's minds, the presence of several coordinate systems in one area for use of different arms in fraught with potent opportunity for disasters resulting from uncoordinations attributed to mistakes in using the military grid. Involved in this matter are branch pride and branch stubbornness, each branch feeling justified in having a special grid system designed to the particular capabilities and needs of that branch. An example of this occurred in the United Kingdom where the British coast artillery, Navy and Air Force covered the coastal area with three incompatible, incommensurable grid systems. Intolerable confusion which resulted from the use of these grids during the numerous German air raids in the Battle of Britain makes it highly probable that these conflicting systems would have led to at least a few local disasters had there been an invasion of Great Britain. 3. Basic Requirements 3.01. Primary Purpose of a Grid: The primary purpose served by the military grid on a map is to provide quick solutions to problems of distance and azimuth for the firing of weapons. It provides a quick simple means for referring to spot locations and for designating targets. It is an essential tool in coordination of military operations. 3.02. The coordination of the efforts of the many arms used on land, sea, and air, is a problem so complex as to make mandatory a single simple solution for problems of target designation and determination of range and azimuth. This requirement is believed to be so important in war that the use of a single system of limited but adequate accuracy is held to be better than the simultaneous use of two incompatible but otherwise more accurate systems. 3.03. The characteristics of the using arms and weapons which affect the design of the system to be adopted involve relatively little research. As a general rule, it has been assumed that permanently emplaced batteries will be more accurate in their fire than batteries temporarily emplaced in the fields. Therefore, the following table appears to provide sufficient criteria to determine the desirable accuracies of the grid system adopted. Probable Errors of Different Caliber Permanently Emplaced Guns at Ranges Shown ------------------------------------------------------------------------ Minimum Probable Probable Errors in Yards Relative Errors -------------------------------------------------------------- Range in 6" Gun 8" Gun 16" Gun Yards Range Defl. Range Defl. Range Defl. Range Deflection 10,000 22 2 68 3 18 3 1:555 1:5,000 15,000 35 4 70 5 28 4 1:535 1:3,750 20,000 52 6 73 8 40 6 1:500 1:3,333 25,000 68 8 77 13 52 7 1:480 1:3,571 30,000 83 19 63 9 1:476 1:3,333 35,000 73 10 1:479 1:3,500 40,000 80 10 1:500 1:4,000 45,000 *77 *7 *1:584 *1:6,428 ------------------------------------------------------------------------ * These values are appear unusual 4. Desirable Characteristics 4.01. Primarily a grid system should be accurate enough for all weapons and all military uses other than for very long distance missiles, should be quickly applicable to any previously ungridded native map, should yield readily to simple computing methods and should provide simple numerical designators for location of targets. 4.02. Plane System. The system of coordinates desired is one with which all computations for the most accurate artillery firing can be simply yet accurately performed and especially one in which the integrity of angles is preserved. A mathematically exact graticule, such as that presented by the meridians and parallels, requires the use of geodetic functions to solve the spherical triangles involved, and entails a long, time-consuming complicated computation. Moreover, due to the convergence of the meridians, the arc of the latitude increases. Complicated geodetic formulas would be necessary in the computation of any distance except one along a meridian. Complex fire control instruments would be needed, manned by personnel highly trained in a branch of advanced mathematics. Neither the personnel, the instruments, nor the time are normally available. As a consequence, the system adopted should be one in which plane trigonometry can be employed in the solution of triangles. In such a plane system for general application to large areas, the simplest and quickest computations can be secured through use of a grid network of equally spaced parallel and mutually perpendicular lines. 4.03. Grid Accuracy. A high degree of accuracy is, of course, desirable. However, grid accuracies which are greatly in excess of the accuracies for the most precise weapon using the grid appear to be neither necessary nor practicable. By reference to paragraph 3.03 above, it will be noted that the probable errors of artillery weapons are much greater in range than are their probable errors in deflection. The minimum probable error of permanently emplaced guns rarely is less than 1/555 in range and 1/5,000 in deflection. Consequently, a suitable military grid should be one designed to conform to these minimum probable errors. 4.04. Adaptability to Various Projections. The grid system selected should be adaptable for use on native maps without complicated recomputation or redrafting of that map. There are many map projections used in the making of large scale maps throughout the world. It is desirable to be able to overprint the adopted grid system on any or all of these projections without the introduction of errors in range and azimuth beyond that probable in good artillery practice. 4.05. Unit of Measure. Three general systems of linear measure are commonly encountered on maps and in grids: the metric system, the so-called English system, the nautical system. Mixtures of these systems unfortunately are prevalent. This matter is further complicated by the fact that three differing elements are involved - map quantities, grid quantities, and the quantities employed by the using arms and weapons. a. Map quantities include azimuths, horizontal. distances, contour intervals, and underwater depths. To the map user, the unit of measure in which horizontal distances on a map are expressed is not particularly important, as the conversion from map distances to ground distances is frequently done graphically against either an appropriately graduated bar scale on the map or range scale. However, the unit of linear measure used in the basic survey of the map may complicate the computation and compilation trig lists for fire control. This latter operation is already quite complex due to the differing origins of longitude, datum planes, spheroids and schemes of projection, and other variations encountered in the native surveys of the world. Thus, the conversion from one unit of linear measure to another incommensurable. unit adds an operation subject to mistakes and affecting final accuracies. b. Contour intervals and spot elevations should, but may not, be in the same unit of measure as the horizontal distances, in order to provide for the ready calculation of true slant ranges, defilade, mask, profile, etc. c. Underwater depths are generally expressed either in meters or in fathoms, although shoal water depths may be also expressed in feet. It is highly desirable that these units of measure be the same as the horizontal unit in order to be readily useful in the computation fo underwater profiles and beach gradients. d. The military grid, while essentially concerned with angles and horizontal distances, must be precisely related to the computed geographic positions. The necessary correlation between the vertical unit of measure and the horizontal unit if measure on the grid as indicated in b above, is essential for the quick solution of problems involving defliade.,mask and true gun target distance. e. The using arms and weapons are not entirely coordinated in the units of measure employed in the laying of the piece. The Coast Artillery measures azimuths in degrees and hundredths of a degree from grid south as the origin. The Field Artillery measures angles in mils, with field orientation of base circles. The Coast Artillery measures its range in yards ,while the Field Artillery may measure it in yards or meters. Due to the tangent relationship of the mil, Field Artillery can readily transpose from angular measure to linear distance in either meters or yards. Each artillery weapon is served and laid by employing a multiplicity of tabular information, plotting tools, and gunner's instruments. All these things must be related to the unit of measure selected for map and grid quantities. At the present moment, due to the recent tremendous concentration of field artillery weapons in the European campaigns and to the use of the metric system throughout in that area, our Field Artillery is well equipped and trained in the use of the metric system. The Seacoast Artillery of the United States, including the Panama Canal and Oahu, are not so equipped or trained. They use the yard- hundredths of a degree system, except in the coast defenses of Sen Diego where coast Defense grid graduated in feet rather than in yards. f. Existing Conditions. The majority of the large scale maps of the world are made on the metric system.Exceptions to this rule are the United States, Canada, Australia, United Kingdom, Union of South Africa, India, Melanesia and Middle East. The following table shows teh unit of measure of native maps and military grids employed in operational areas of the recent campaigns. MAP UNITS GRID UNITS ------------------------------------------- ------------------- AREA HORIZONTAL UNIT VERTICAL DEPTH UNIT GRID GRID TYPE (Map Bar Scale) UNIT (Map (Bathymetric UNIT Contour) Contour) ----------------------------------------------------------------------------- 1. France Meter Meter Meter Meter Lambert 2. Germany Meter Meter Meter Meter Trans. Merc. 3. Italy Meter Meter Meter ----- ----- 4. Tunisia Meter Meter Meter ----- ----- 5. Libya Meter Meter Meter Meter Trans. Merc. 6. Egypt Meter Meter Fathon Meter Trans. Merc. 7. Okinawa Meter,Cho Meter Meter Meter Unknown 8. Burma Miles Foot Fathom Yard Lambert 9. China Li,meter Meter Fathom Yard Lambert 10. Russia Meter Meter Foot Meter Trans. Merc. 11. Hawaii Mile Foot Fathom Yard Polyconic 12. Philipines Mile Foot Fathom Yard Polyconic 13. Poland Meter Meter Meter Meter Stereographic 14. Holland Meter Meter Meter Meter Stereographic 15. Belgium Meter Meter Meter Meter Bonne 16. Japan Meter,Cho Meter Meter Meter Trans. Merc. 4.06. Width of Zone. An inherent fault of any system of plane coordinates applied to the surface of a spheroid is the fact that inaccuracies increase as the zone is extended east and west or in other cases, as the belt is extended north and south. It is also desirable, although not entirely necessary, to keep at a minimum the deviation of grid north from true north. This deviation likewise increases materially as the distance from the central meridian increases. These inaccuracies can be kept within reasonable limits by the adoption of narrow grid zones. It has been stated only semi-facetiously that there are three military engineering axioms: a. It always rains in war. b. It is always too cloudy to get aerial mapping photographs. c. Battles are always fought on grid junctions. This last axiom is spoken from the depths of bitter experience, rendering it obvious that a grid zone should include as much area as possible so as to obviate too frequent junctures between grid zones on the battlefield.However,this desirable criterion cannot be widely applied without including intolerable inaccuracies of the grid. Elimination of the undesirable features consequent upon fighting a battle on a grid juncture can be partially accomplished by providing for overlap between grid zones, the 9 degree width of the military grid system presently prescribed for use in the United States introduces appreciable inaccuracies near the edges. A reduction in width to 6 degrees betters this situation materially. The computation of ranges and azimuths where the gun position is located in one grid zone and target in another can be provided for by a half degree overlap between grid zones, enabling the coordinates of the gun zone to extended a half a degree into the grid zone in which the target is located. 5. Comparison of Grids 5.01. Polyconic Grid. For military Purposes, a grid may be regarded as a set of perfect squares ruled on a plane map, scale 1:1, and then transferred to the earth's surface. Evidently after being transferred to the earth's surface the squares will no longer be perfect; and distortions they will have received in being put on the surface of the earth will reflect the distortions of the projection used for the map. a. The polyconic projections is defined as one which the central meridian and all parallels are mapped to scale and with true curvature. All other lines are stretched, the amount increasing as the square of the distance from the central meridian, and being greatest for north-south lines. Angular errors also appear, increasing with distance from the central meridian. Of course it is possible to commute these errors, at least roughly, and to allow for them, and this is regularly done by engineer survey troops. But the corrections are generally considered beyond what is to be expected of artillery units in the field, and for that reason all mention of them is omitted in artillery technical manuals, even when survey procedures are discussed. It is proper, therefore, to compare the errors of the projection as shown in the following table, directly with the errors of the guns (Section 3.03). Errors of U.S.Military Grid at 4°30' from Central Meridian, and 30° Latitude ------------------------------------------------------------------------------------------------- | | | True | True Azimuth 0° | True Azimuth 45° | Azimuth 90° True |----------------------------|-----------------------------|---------------------------- Range | Range Rela- | Defl. Rela- | Range Rela- | Defl. Rela- | Range Rela- | Defl. Rela- (yds) | Error tive | Error tive | Error Defl. | Error tive | Error tive | Error tive | (yds) Error | (yds) Error | (yds) Error | (yds) Error | (yds) Error | (yds) Error ---------|--------------|-------------|--------------|--------------|--------------|------------- 10,000 | 23 1:435 | 0 0 | 12 1:836 | 12 1:836 | 0 0 | 0 0 30,000 | 70 1:428 | 4 1:7500 | 35 1:859 | 35 1:859 | 0 0 | 0 0 40,000 | 70 1:428 | 4 1:5000 | 47 1:850 | 47 1:850 | 0 0 | 0 0 It is evident that at 40,000 yards, and an azimuth of 45°, the error of the grid in deflection is almost five times the probable error of a 16-inch gun, Errors of the above amount are characteristic of the so-called non conformal projections, i.e. those in which the shapes, as well as the scale of small areas is distorted. Such non-conformal grids were widely used prior to World War I; but most of them have been abandoned in recent years, chiefly, no doubt, because of the breakdown of the old French Bonne grid during the War. In addition to its lack of conformality, the polyconic projection possesses the disadvantages that it has not been studied thoroughly from a mathematical standpoint. Hence the small corrections needed for precise surveys are not known; the transformation from other grids to the polyconic is not known; not even the transformation from one polyconic belt to another has been studied. b. So far as grid junctions are concerned,the polyconic is theoretically excellent; it can be extended indefinitely both north and south, so that the world can be divided up into meridional strips. In practice, the present World Polyconic has two latitudinal junctions, one near 24°, due to failure to put the origin of the old U. S. grid sufficiently far south; the other is near 49°, and is due to inaccuracy in the old tables which amounts to 1.1 meters. c. The polyconic grid is not well suited for foreign maps due to its lack of conformality. By the older laborious hand methods of grid plotting, this introduced no difficulties other than laborious calculations; but the use of the coordinatograph, for rapid plotting of grids and projections, requires a conformal grid. 5.02. Cassini-Soldner Grid. This is a non-conformal grid,very similar to the polyconic, and open to the same objections. It differs only in that the grid east-west lines, rather than the parallels are represented to true scale and with true curvature. 5.03. The Bonne Grid. Both meridians and parallels are represented to true scale on the Bonne projection; the error shows up on lines which run NE to SW, or NW to SE, It is just as bad as in the case of the other non-conformal projections; and this projection has been generally abandoned. 5.04. The Stereographic Grid. The stereographic grid may be briefly defined as a conformal grid (that is, one having zero angular distortions for small distances, and very small angular distortions for any distance) in which the scale error is zero on a standard circle. The fact that this grid is conformal insures that within about 200 miles of the center-point, the error in deflection will be less than the error of the most accurate guns. The range error is considerably larger than the deflection error, but is considerably less than the range error of permanently emplaced artillery. Unfortunately, this grid cannot be extended more than 300 miles from its center point and grid zones are circular in shape. It is quite suitable for small roughly circular countries such as Poland, Holland, or Romania, which use it; but on a world-wide basis it would lead to great multiplicity of grid junctions, and points where three or more grids meet could not be avoided. 5.05. Lambert Grid. Like the Stereographic, the Lambert is a conformal projection. It may not defined as a conformal projection in which the scale errors are zero along two parallels. It is well suited to the mapping of moderately large areas, and has been extensively used by the British and French, especially in recent years. The numerical values of the errors are similar to those for the Transverse Mercator given in the next paragraph. The errors are very small in deflection, as is necessary for an artillery grid. It is readily adaptable to gridding maps on other projections. In general, a slight change of scale only would be required. On the other hand, the rapidly increasing grid declination makes it impracticable to extend the grid more than about 15° from the central meridian (except along the Equator, where grid declination is always zero). For this reason, the British and French were forced to introduce numerous zones, and to permit junctions of three grids at the same point. These numerous grid zones necessary, both north-south and east-west, make the Lambert undesirable for extensive world coverage. 5.06. Transverse Mercator Grid. The Transverse Mercator grid may be defined as a conformal grid in which the central meridian is represented by straight line at the true scale. It is well suited to large areas, and is being used by the Germans, Russians, British, and Japanese. The errors at a given point vary little in all azimuths end average values for different ranges are given in the following table for 30° north latitude and for 3 1/2° from the central meridian. ------------------------------------------------------------------- | | Transverse | Transverse | | True | Mercator Grid | Mercator Grid | | Range | Range Relative | Deflection Relative | | (yds) | Error Error | Error (yds) Error | | | (yds) | | |--------|-----------------------------|--------------------------| | 10,000 | 10 1:1000 | 0 0 | | 30,000 | 30 1:1000 | 3 1:10000 | | 40,000 | 40 1:1000 | 5.8 1:6900 | |--------|-----------------------------|--------------------------| Obviously,t he grid is well suited to artillery purposes since the inevitable errors are thrown into range rather than deflection. The grid can be extended indefinitely in latitude like the polyconic. Hence it is never necessary to have a grid junction involving more than two grids (except, of course, near the Poles). Transformation of coordinates from one belt to another can be done by a formula already worked out. The formula is always the same, and is very simple in character. The grid declination will remain moderate throughout the belt. The grid can be readily adapted to use on other projections. Much theoretical work has already been done on this subject by a large group of mathematicians, including especially Professor W. K. Hristow. Extensive computations, especially for the Balkan Countries, were done by the German High Command (O. K. H.)during World War II which could, in an emergency, be promptly utilized if the proposed projection is adopted. In addition, much geodetic data of foreign areas on file at Army Map Service are on this system. The projection is well suited for converting data on various spheroids to a common basis. Traverse and lower orders of triangulation may be computed and adjusted directly on the grid due to its conformality. This feature, which is a large saving in field and office, is not practicable where a non-conformal projection such as the present Polyconic is used. 5.07. Tabular Comparison of Grids. -------------------------------------------------------------------------------------- GRID SYSTEM APPLICABILITY GRID MAXIMUM MAXIMUM TO FOREIGN MAPS** JUNCTIONS RELATIVE RELATIVE RANGE ERRORS* DEFLECTION (45,000 yds) ERRORS* (45,000 yds) -------------------------------------------------------------------------------------- Polyconic Very Poor Few & simple 1/1228 1/2454 Cassini-Soldner Very Poor Few & simple 1/1228 1/2454 Bonne Very poor Many & complex 1/2454 1/615 Stereographic Good Many & complex 1/2454 1/15,360 Lambert Good Many & complex 1/2416 1/7,663 Transverse Mercator Excellent; much work already done Few & simple 1/2416 1/7,663 --------------------------------------------------------------------------------------- * Range and deflection errors are maximum values within 160 miles from the center of the projection, whether the center is a line, as in the Transverse Mercator, Lambert, Cassini-Soldner, and Polyconic, or a point as with the other two. The figures are based on GSGS "Survey Computation". 160 miles is the approximate distance (at 40° of latitude) from the center of the proposed Transverse Mercator Zones to the junctions, about 3° of longitude. The actual maximum errors of the present world Polyconic grid are considerably larger, since the grid zones are 9° in width. 6. Conclusions as to System to be Adopted 6.01. The Lambert Orthomorphic projection is conformal but is not suitable as it requires grid zone junctures both north and south and east and west. The ployconic grid system now prescribed for use as military grid on all maps of U. S. is inaccurate in both azimuth and distance. The greater inaccuracy is in azimuth and is more than the probable error in deflection of permanently emplaced guns. The transverse mercator grid is conformal and is ----------------- **A grid system is considered applicable to a foreign map if it can be put on most maps without changing map or grid except is scale. immediately applicable without plottable error, to the majority of the map projections commonly encountered on the native maps of the world. The transverse mercator grid reduces inaccurecies to a point where they are compatible with the accuracies required by all modern artillery weapons. This grid is sufficiently accurate to eliminate the necessity for a special Coast Artillery grid in the vicinity of coast defense locations. APPENDIX 2 1. FIRE CONTROL REFERENCING Existing regulations of the Department of the Army (See FM 6-40, Part Four, Chapter 2) designate the following method for reading a gird reference. a. Designatiuon of sheet, parenthesis, X coordinate, decimal, location to nearest yard, a dash, Y coordinate, decimal, location to nearest yard, parenthesis. Example: Annapolis (804.729-1286.684) b. When the map is definitely understood, its designation may be omitted. Example: (804.729-1286.684) c. If the location to the nearest 10 or nearest 100 yards only is desired, or if the measurements can not be made with greater accuracy, the digits indicating units or tens may be omitted. Examples: (1) (804.72.1286.68) to nearest 10 yards. (2) (804.7.1286.7) to nearest 100 yards. d. For expediency it is permissible to include only two digits to the left of decimal point (10,000 and 1,000 digits), omitting any preceding digits. Examples: (1) (04.729-86.684) (2) (04.72-86.68) (3) (04.7-86.6) e. If the point is fixed within an area 10,000 yards square, only one digit need be given before the decimal point of each coordinate. Examples: (1) (4.729-6.684) (2)(4.72-6.68) (3)(4.7-6.7) f. If a large number of points are being designated by the abbreviated coordinates shown in example (3), the decimals and dashes may be omitted and the reference given as (4767). 2. PACIFIC WORLD WAR II PRACTICE During the war, the Pacific and Southwest Pacific Commands found it feasible to use a system for reading general grid references similar to that used with British Girds. Apparently, a broad interpretation of existing regulations was made to find authority for the change. The name of the map was not mentioned (authority: see 1 b above) digits to the left of the 10,000 and 1,000 unit digits were omitted (authority see 1 d above) decimals and dashes were omitted (authority see 1 f above). a. A reference on a map employing a 1,000 unit interval was determined by reading the 10,000 and 1,000 digits of the easting line to left of point, estimated tenths(100 units) eastward to point, the 10,000 and 1,000 digits of the northing line south of the point, estimated tenths (100 units), northward to the point. This was written as a 6 digit continuous number. Example: 143286 b. A similar procedure was follows in reading a reference on a map using a 10,000 unit interval, except that the digits for the gird lines were for the 100,000 and 10,000 units (the last four digits being omitted) and the estimated tenths represented 1,000 units. Thus, a reference for the same point cited in (1) above, was as: 214128 c. There were two major faults with the pacific system: danger of confusion between a reference taken from a map bearing a 1,000 unit interval and from one of a 10,000 unit interval, inasmuch as both were six digit numbers; and lack of connection between references for a common point taken from a 1,000 unit gird and from a 10,000 unit gird, inasmuch as in reading a reference from a 1,000 unit gird the principal digits were the 10,000 and 1,000 ones and for a reference from a 10,000 unit grid the principle digits were the 100,000 and 10,000 ones. Thus, references for a common point might read: 047866 (from a 1,000 unit gird) and 804286 (from a 10,000 unit gird). 3. BRITISH GRID REFERENCING References for british grids are read according to the following methods: a. Maps bearing a 10,000 unit interval (1:100,000 to 1:500,000): letter of 500,000 unit source (written as a small capital letter), letter of 100,000 unit square (written as a large capital letter), 10,000 digit of easting line to the left of the point, estimated tenths (1,000 units) eastward to point, 10,000 digit of northing line south of the point, estimated tenths (1,000 units) northward to the point. Example: cA1428 This locates point to nearest 1,000 units. b. Maps bearing a 1,000 unit interval (1:5,000 to 1:100,000 inclusive): Letter of 100,000 unit square, 10,000 and 1,000 digits of easting line to left of point, estimated tenths (100 units) eastward to point, 10,000 and 1,000 digits for northing line south of the point, estimated tenths (100 units) northward to the point. Example:A143286 The locates point to nearest 100 units.